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On the improvement of convergence of Hill determinants 

Alexander N Drozdov 
Institute of High Temperatures of the Russian Academy of Sciences, 13/19 Morskaya SeeeS 
127412 Moscow, Russia 

Received 16 May 1994, in final form 21 September 1994 

Abstract We propose a simple approach lo analytically determine a parameler of a convergence 
factor exp(-gx2/4) in the Hill determinant method. It provides much more rapid convergence 
of the method than the olher analytical approaches currently used for lhe g determination. 

1. Introduction 

Due to its simplicity and good behaviour, the Hill determinant method (HDM) is 
acknowledged as being one of the most efficient algorithms for the calculation of highly 
accurate eigenvalues of the Schrodinger equation for polynomial potentials 

H Y ( ~ )  = E Y ( ~ )  r--r*m lim y ( x )  = 0 ( 1 4  

where H stands for the Hamiltonian 
ZM 

H = -d:, + V ( X )  V ( X )  = vmxm V*M > 0. (1b) 

The corresponding literature has been greatly enriched for the last two decades. A 
small sample of this work can be found in [1-23]. By convention, one can distinguish 
the variational [l-111 and the algebraic (Taylor-like) HDM [1,2,12-23], the type being 
determined by the basis functions chosen or (more correctly) by the way in which the 
eigenvalue problem is reduced to the appropriate matrix representation. 

The variational approach consists of expanding l y )  in terms of an arbitrary complete set 
of orthonormal basic vectors (li)) 

f l l = I  

and constructing the matrix representation of the Hamiltonian Hi,j  = ( i l H l j ) .  Successive 
approximations to the eigenvalues of (1) EA'") can be then obtained at different levels of 
truncation by means of the Rayleigh-Ritz method, which consists of finding the roots of 
the secular determinant 

(3) 

The advantage of the variational HDM is that it is always convergent, and ensures the 
traditional upper bound property, that is, as N increases, the roots of (3) tend to the exact 
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det(Hi,j - ESi,j) = 0 i ,  j = 0,. . . , N - 1. 
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eigenvalues from above EAN) > E,. Its main disadvantages are that diagonalization of large 
matrices is time consuming and may suffer from numerical instabilities and cumulation of 
round-off errors. 

In a preceding paper I [ll], we have described a rather simple variational procedure 
avoiding these difficulties. In order to make this article self-contained, we briefly sketch 
some of the findings of I. We have compared there three different basis sets. The most 
natural basis for the problem of interest appears to be in terms of the particle number 
operator ata, determined through the introduction of creation and annihilation operators at 
and a 

'g-'/2 (a t + a )  d, = g'"(a - at ) /2  [ U ,  at] = 1. (4) 

This choice is equivalent to using a set of scaled harmonic-oscillator eigenfunctions 
l i )  = lui(x)), corresponding to the Hamiltonian 

Ho = -dzx + g2x2/4 - g/Z Hou,(x) = gnu, (x)  ( 5 4  

u.(x) = [ ( ~ x / g ) ' / ~ ~ " n ! ] - ' ' ~ ~ n [ ( g j 2 ) ' " x ]  exp(-gx2/4) (56) 

where H,(x)  are the usual Hermite polynomials and g is some parameter to be determined 
according to variational principles. When applied to (l), this leads to a (2m + 1)-term 
recurrence relation for the expansion coefficients Ci of the form 

n = 0.1,. . . 

m being determined by a particular choice of the potential coefficients M < m < 2 M .  An 
idea of Hautot and Magnus [l] (see also [6.8]) was then used to determine the eigenvalues 
from the boundary condition 

C N + I = O  O < i < m - 1  (6b) 

which is obviously equivalent to the Rayleigh-Ritz truncation of the secular determinant 
(3) at N - 1. The eigenvalue problem is thus reduced to calculating the roots of an m x m 
determinant, disregarding the number of basis functions taken into account. The recursive 
pmcedure so constructed allows us not only to avoid cumulation of round-off errors, but 
also minimizes storage requirements. 

The efficiency of this kind of variational approach is known to be very sensitive to the 
value of the variational parameter, and the problem of importance is to properly determine 
it. An obvious way of doing this is to numerically choose that value of g, referred to 
henceforth as gb, which minimizes the approximate eigenvalue of interest. Unfortunately, 
E,!N) as a function of g has several local minima, the number of which is proportional to 
N. This makes searching for its global minimum we are interested in difficult; while the 
procedure itself becomes very arduous. 

In any case, it is clear that the way of fixing g by the process of computation, although 
good, is both time consuming and inconvenient from the computational point of view, and a 
great deal of effort has been devoted in recent years to determine this parameter in a simple 
analytical way. At the present time, there are several more or less equivalent techniques 
for the g determination [l-5,9,11,13,23]. Most of these techniques rest on the simplest 
variational approach, which is to just use a single eigenstate of the basis Hamiltonian Ho 
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to get a best fit to the corresponding eigenstate of the true Hamiltonian H. The g value so 
determined appears to be independent of the number of hasis functions taken into account. 
This is in contrast to the results of Z which show that the gb changes drastically as N 
increases. With the intention of obtaining N-dependence, we proposed to find out g by 
minimizing the trace of H 

One can note that an analogous method for fixing g has been successfully employed in 
obtaining the low-lying eigenvalues of the quartic anhmonic oscillator [SI. 

All the mentioned approaches were tested numerically on four particular systems, 
corresponding to one-well, double-well, triple-well symmetrical and asymmetrical 
oscillators. It was found that the g, approach produces the same convergence rate as the gb 
approach, which in turn is much higher than that obtained with the other analytical methods 
currently used for the g determination. Unfortunately, recurrence (6a) is rather difficult to 
determine and, for m z 3, is hardly usable. 

Another less rigorous approach to the problem of interest is in terms of the algebraic 
HDM. The latter rests on a Taylor-like representation of the wavefunction written generally 
as 

m 

y ( x )  = exp@o~ynomia~ in x )  c ~ x ' .  
i=O 

This corresponds to using a non-orthogonal basis set of the type { x i  exp(. . .)I. When ansatz 
(8) is used in (I) ,  the result is a recurrence relation for the Ci. We note the relative ease 
with which the eigenvalues can then be computed through a simple recursive scheme. We 
again emphasize that, due to its simplicity, the algebraic HDM is one of the most widespread 
algorithms for the calculation of eigenvalues [1,2,12-23]. On the other hand, it is less 
reliable when compared to the variational approach, which is reliable and efficient for all 
values of the potential coefficients and parameter g. Little is known about its mathematical 
grounds, i.e., how it works. There is still some controversy about its general validity 
[Z, 17,18,20,21]. Thus, for example, Chaudhuri [ZO] has treated the anharmonic oscillators 
of the type ax2 + bx4 f cx6 and shown that, with a particular choice of the convergence 
factor exp(-ax4 +,9xz), the algebraic HDM may lead to incorrect eigenvalues. Hautot [2], 
in tum, has claimed that the use of this factor with variable ,9 removes this inconsistency 
(see also [ 18,211). 

Another interesting problem is to understand how the algebraic HDM converges. We 
intend to study this problem using the simple factor exp(-gx2/4) and to show that the gt 
approach also preserves its significance in such a case. 

2. The algebraic ADM 

For simplicity, we restrict ourselves to the symmetrical Hamiltonian 

M 
H = -d:= + uynxk. 

m=l 
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Due to the symmetry of H, even and odd states can be treated separately. To be consistent 
with I ,  we rewrite (8) as 

where p = 0 and 1 for the even and odd parity states, respectively. Substituting (10) into 
(la) with (9), we anive at 

M 
(zn + p + 2 ) ( b  + p + l)C.+l + [ E  - g ( b  + p + +)IC. + $g2C.-1 - uYnC"-m = 0. 

(11) 

The calculation commences at n = 0, with CO = I and all other C coefficients zero for 
0 > n 2 -M.  The eigenvalues are obtained from the roots 

m=l 

CN = 0. (12) 

This can be achieved in any one of several ways already described in the literature (see, 
for example, [1,2,13,14, 17,21,24]). Furthermore, due to Killingbeck's technique [21,24], 
it is possible to find the expectation values, such as (xz) ,  (x4), etc. without reconstructing 
the C. sequence associated with an eigenvalue. It is also worthwhile noticing the minimal 
storage requirements inherent to the algebraic HDM. 

In comparing this aproach with the variational HDM. we note the ease with which 
recurrence (11) is obtained for arbitrary M .  We also note that, in contrast to recurrence 
(&), the number of terms involved in (I 1) depends not on the M, but on the number of 
terms involved in the potential. We again emphasize that the calculation of the eivenvalues 
and the coefficients C; of the eigenfunctions is simpler in the algebraic approach. For all 
these reasons, this approach must be preferred. Its one simple drawback is that it is more 
slowly convergent. 

3. Anaiytid methods for the g determination 

As we have already noted, the algebraic approach is less reliable than the variational 
approach. By this, we mean, first, that in each particular case, one needs to prove that 
the resulting wavefunction is square integrable in the algebraic approach and, second, that 
the roots of (12) through (11) are not convergent for any positive g. Moreover, in contrast 
to the Rayleigh-Ritz eigenvalues determined from (6) or (3), those of (12) through (1 1) are 
not bounds to the exact eigenvalues. That is, there is no simple criterion to fix g by the 
process of computation without resorting to external theoretical speculations. 

As an example, one considers a method to fix g proposed by Hautot and Magnus [l,  21, 
Before doing this, one notes that recurrence (1 1) is of order M - 1. Without the restriction 
C, = 0 if i e 0, it has ( M  - 1) independent solutions which are noted C p .  The method 
we discuss rests on the following two assumptions. First, it is assumed that these ( M  - 1) 
solutions can always be ordered so that the k first dominate the others ( M  - k - I) ,  i.e. 

lm Cj""/C,'"' = O  0 < m < k  - 1 i m' < M -2. 
i-cr, 
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Let us denote r;, the ratio of the largest subdominant solution to the smallest dominant 
solution. Then, another assumption is that the relative error due to truncating (11) at N 

E = (E:" - En)/& 

is of order rN, i.e. 

IW?) - W/E,I = Irrvl. 

In order to obtain an optimum value of g, Hautot [2] proposed to solve the recurrence 
for various g by using the generalized Miller algorithm and then to select values which 
maximize the quotient 

Idominant solution1 
lsubdominant solution] ' 

181-1 - 
This ensureS that one arrives at a true eigenvalue, however, the practical utility of such a 
method seems rather doubtful. Since an appropriate value of g has to be used for each 
eigenvalue, too large execution times would be necessary to converge results. Even though 
we use a single value of g for all the eigenvalues at once, the preparatory procedure need 
not be convenient for automatic computation. 

The above observations have inspired the quest for methods to analytically determine g. 
The practical problem is that the condition for this parameter has to be simple enough to be 
exactly soluble, and yet general enough to provide as large a convergence rate as possible 
for any choice of the potential coefficients. Banerjee et a1 [I31 were the first to propose an 
analytical expression for g. These authors studied the problem of generalized anharmonic 
oscillators x2 + Q M X ' ~ ,  and adjusted the value of the parameter 01 = g 14 according to the 
state and value of the coupling constant considered 

g, = 2 + 4n(M-l)/(M+l)("*M)l/(~+l), (13) 

This empirical formula avoids the above procedure, though the convergence produced with 
(13) (especially for the ground state) is far from optimal. In any case, as shown in I ,  it 
works equally weU in both the variational and the algebraic HDM. It will now be our aim 
to show that the same is true for the variational criterion (7). That this is the case can be 
seen by the following heuristic argument. 

The terms involved in (10) can always be rearranged so that they cast that expansion 
into the form 

i=O 

analogous to (2). and vice versa. Owing to this fact, one may expect that an optimal 
expression for g obtained in terms of one approach would be relevant for another, or, 
in other words, that a best choice of the basis set (read the g parameter) would be best 
irrespective of the method of determining the Cj coefficients. 

Since the problem under study is parity invariant, we rewrite (7) as 
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When applied to (9), this condition leads to a (M + ])-order polynomial for g 

M 
xzg"+' - c 4mv2,Xbg  M-m = 0 

where we use the shorthand 

(nIx"In) = X b ( n ) / g "  (15d) 

for the coefficients X,(n) ,  which can easily be found if one makes use of the well known 
relationship 

xl i )  = g-'/*[(i + I)'/.'li + I) + i1/'1i - I)). 

Some of these are given by 

X&) = 1 + 2n 

x6 (n )  = 15 +40n + 30nZ + 2on3 

X&)  = 105 + 280n + 350n2 + 140n3 + 70n4 

&(n) = 3 + 6n + 6n2 

X d n )  = 945 + 2898n + 3150n' + BZOn' + 630n4 + 252n5. (164 

Upon substituting (16a) into (E), one obtains explicitly the first few coefficients 

X z  = 2N2  - N + 2 p N  

X q = 8 N 3 - 6 N 2 + N + 1 2 p N 2  

X g  = 40N4 - 40N3 + 20N2 - 5N + p(80N' + ION) 
( 1 W  

X 8  = 224N5 - 280N4 + 28ON' - 140N' + 21N + p(560N4 + 280NZ) 

X I O  = 1344N6 - 2016N5 + 3360N4 - Z 2 0 N 3  + 966N2 - 189N 

+ p(4032N' + 5040N3 + 378N). 

Equation (15b) can be then solved for g for a particular choice of the potential 
coefficients by using any root-finding procedure. It is obvious, however, that the utility 
of the present approach seems rather doubtful for M 5,  because as m increases the 
coefficients XU. become rather difficult to determine. Thankfully, in practical calculations, 
it is not necessary to solve (15b) exactly. It is largely sufficient to approximately calculate 
its solution. To achieve this, we fist note that, with increasing N ,  X Z ~  becomes much 
larger than the other X ' s  in (15b), thus providing us with an approximate solution of the 
form 

(17) l /(M+U St = ( ~ M " Z M X Z M / X Z )  
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Interestingly, it only depends on the main coefficient U ~ M .  This is in agreement with the 
heuristic assumption of Hautot and Magnus [ l ]  that all characteristics depend on the highest 
power in the potential. 

Proceeding further, it is a matter of exercise to prove that in the leading order in n 

Substituting (18) into (I%), we arrive at 

X h  = 2"'xz,Nmf1/(m + 1) + O ( N m )  

leaving us finally with 

g, = 2[MuZMXzMNM-' / (M + l)ll '(M+l). (19) 

The utility of the present approach was tested numerically, by applying it to three 
particular systems. Results are given in the next section. We note that in all cases considered, 
starting with N - 20, the eigenvalues determined with g,, obtained numerically from (15b), 
are found to be practically indistinguishable from those determined with (19). 

For completeness, we also tested the other currently used expressions for g, including 
that of Banejee et al (13). For this reason, we briefly discuss them below. Hautot and 
Magnus [l] solved (11) for Ci in the limit i + w and obtained, in the way described 
above, an expression for g which reads, in our notation, as (oOpt = g, /4)  

M + 1 S)(l-MY(M+I) 
g, = -2cotgStan- s 1-cotgstan- 

M + l  2 ( 2 

where S is determined from 

(206) 
a 2x s = -(cos S) (M+"lZ  - < s < -  M + 1  cos - 

2 M t 1  M + 1 '  

Although the above expression was obtained for the ground state of the potential 
V = x Z M ,  the authors of [I] claim that it is also perfectly suited to the numerical resolution 
of the x2 + v ~ ~ x ~ ~  problem. It is seen, however, that it does not depend on the coupling 
constant (cf (19)). The authors of [I] did not find it important to take VZM into account, but 
one can readily conceive situations where it must be so. 

There also exist several, more or less, general techniques to determine g according to 
variational principles. The simplest variational calculation is to choose U&) as the trial 
eigenfunction and to determine g by minimizing H0.o: 

acHo,dg = go) = 0. (2 ld  

This yields the condition 

M 
gM+' - c 4 m ( 2 m  - l)!!u2,g"-m = 0. 

m=l  
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Particular cases of the above polynomial, for M = 2 and 3, were obtained in the literature 
in many seemingly different ways [3,4,9]. With the scaling factor so determined, the 
variational HDM appears to be well suited to the numerical resolution of the Schrodinger 
equation for one-well potentials [3,4,9,1 I]. 

The same, however, is not true for double-well potentials. In such a case, the efficacy 
of the method deteriorates rapidly as either the potential barrier or the quantum number 
increases [3,11]. One of the reasons for this seems to be the fact that minimization of H0.0 
lacks a sound theoretical basis in the case of excited states. In particular, in the odd case, 
it would seem more reasonable to choose U ,  as the trial eigenfunction, rather than ug,  from 
which follows 

M 

3gM+" - x 4 m ( 2 m  i- I)!!s&gM-"' = 0. (22) 

Unfortunately, the use of two conditions (21) and (22). instead of one (21). inessentially 
improves convergence properties. 

To change the situation drastically, one can use an appropriate scaling factor for each 
eigenvalue. Thus, for example, should one fit g by minimizing Hn,n, it immediately gives 
the condition 

fll=1 

In the following, the g values so found will be identified by using the appropriate subscript 
n with g, i.e. go, g ~ ,  gz etc. 

Another way to fit g is to minimize the deviation of the basis Hamiltonian HO from the 
true Hamiltonian 

as(nl(H - Ho)'ln)k = gd) = 0. (24a) 

Then, the new condition is 

[I - X,(n) + + ~ 4 ( n ) l g ' ~ + ~  - C ( m  - l ) u b [ X , ( n )  - f~,+2(n)]g'~+'-~ 
M 

m=2 

As shown in I ,  both (23) and (24) produce much better convergence than condition (21). 
It is seen, however, that the g values so found are dependent of n.  As a result, before 
calculating an eigenvalue, we have first to determine, at least approximately, the number 
of eigenvalues n ( E )  less than the trial energy E chosen to start calculations in terms of 
(6) or (11). This can be achieved either analytically, through asymptotic approximations to 
n(E)  for E -+ 00 [25] ,  or by the process of computation. Moreover, if the eigencolumns 
obtained are to be used for other calculations, it is best to use a fixed g to describe the basis; 
this ensures that the eigencolumns for different energy levels are theoretically orthogonal. 
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To resolve the above problem, one can fix g by simultaneously imposing the following 
two conditions [3]: 

a,H,,,, = o a,H,," = o (254 

which lead to 

M 

where a prime denotes differentiation with respect to n. In order to distinguish the g 
determined by (25) from the other g values it will be referred to as g,. The disadvantage 
of (25) is that, for particular choices of the potential coefficients, it may have either several 
or no real and positive roots for g. 

4. Numerical applications 

To compare the above mentioned criteria for evaluating g, we choose the simplest example 
which proves to be easily tractable by each criterion. It is given by the Hamiltonian 

H -d:z + UZX' + u4x4. (26) 

It is noteworthy that, when applied to (26), recurrence (1 1) is well behaved. Owing to this 
fact, no factorization is required. In numerical computations, we have used double-precision 
arithmetic by truncating the results to 15 decimal digit accuracy. 

In order to see the relative efficacy of the above methods for the g determination 
in giving precise eigenvalues, we.carried out computations of the six lowest even-parity 
eigenvalues of (26). For the purpose of comparing computational results with those of 
I, we used the same values of (UZ. u4), namely (1, 1). (1. lo), (1, 100). (0, I), (-1, 1). 
(-1,0.025) and (-1,O.Ol). Since the conclusions drawn in all the cases are essentially 
the same, the results for only n = 0,2 and for (1, loo), (0, l), (-1,O.OZS) are projected in 
tables 1, 2 and 3 which show both the convergence rate of successive approximations as a 
function of the truncation order and the comparison of the results for different g approaches. 
The tables contain the relative error E obtained for N = 20, 40, 60, 80 and 100. In deriving 
these results, we have made use of the 'exact' eigenvalues obtained in I, by the variational 
HDM, by systematically increasing the dimension N ,  and the maximum uncertainty in these 
eigenvalues is +1 in the last figure. 

To be consistent with the condition under which (13) was obtained, we first consider 
the quartic anharmonic oscillator defined by (26) with uz = 1. Table 1 shows that, in such 
a case, all the methods, excepting the g, approach, work (more or less) well, however, 
the present approach produces much better convergence than the others. However, the g, 
approach fails to produce any real and positive roots for g, when uz > 0. 

The same is true for the pure quartic oscillator V = x" (see table 2) which was 
considered by us in order to test the arguments of Hautot and Magnus [l]. These authors 
claim that at each value of E there is an optimal value g,, such that, for calculating the 
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Table 1. The fractional error E of successive approximations for Lhe two lowest even- 
p d t y  eigenvalues of the potential x1 + 100x4, obtained with different g approaches as a 
function of the truncation order. The correct eigenvalues Eo = 4.999417545 13759 and 
Ea = 34.873984261 9948 were used ss a bssis for the calculations. (Exponential notdon-k 
means thal the number preceding is to be mulliplied by loTk). 

N 

E 20 40 60 80 100 

n = O  

g, 5.649 0 0 0 0 

8: 5.649 0 0 0 0 

gI -4.6-01 6 .842  4 .742  - 4 . 2 4  2.942 
g, 3.343 1.5-06 -1.8-10 -8.5-13 0 

go -8.4-05 -7.068 -2.2-10 -8.7-13 0 
gd -4.0-05 -9.2-09 -3.4-11 -2.6-13 0 

n = 2  

g, 8.8-08 0 0 0 0 
gr 1.9-06 7.8-12 0 0 0 

6: 8.8-08 0 0 0 0 

gz 1.045 -9.5-09 -8.1-13 0 0 

g, 9.842 8.7-06 -3.4-08 -4.3-11 -2,614 

go -1.1-03 -1,146 -6.649 -4.4-11 -8.3-14 

g j  6.5-05 -1.9-08 - 1 . 0 - 1 1  -1.0-14 0 

Table 2. 
1.060362090484 IS and Ez = 7.45569793798674. 

The same as in table I ,  but for the pure quartic oscillator x4 with Eo = 

N 

s 20 40 60 80 100 

n = O  

g, 6.2-09 0 0 0 0 

6, 6.249 0 0 0 0 
gr 1.7-03 1 . W 5  -1.W -3.849 2.1-IO 

PO -9.8-05 -9.0-08 -3.0-10 -1.2-12 0 .~ 
gd -4.545 -1.2-08 -4.5-11 -3.5-13 0 

n = 2  

gr 9.3-08 0 0 0 0 
se 2 .147  -2.1-14 0 0 0 
8, 9.3-08 0 0 0 0 

82  1.1-05 -1.1-08 -1.0-12 0 0 
go -1.3-03 -1.4-06 -8.7-09 -6.C-I1 -8.1-14 

gd 7.3-05 -2.2-08 -1.3-11 -1.2-14 0 

eigenvalue E. with the given precision, a minimal dimension N, is required. From figure 1 
it is seen, however, that there is no optimal value of g, but rather an optimal range. From 
numerical computations, we have found that, as N increases, this range becomes wider and 
shifts to larger g values. Moreover, its location was found to be rather sensitive to the choice 
of the potential coefficients. This is inconsistent with the statement of Hautot and Magnus 
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Table 3. The same as in table I ,  but for the double-well oscillator -2 + 0.025x4, with 
E, )=  -8.61l88071933411 and Ez =-5.94973458955663. 

N 

g 20 40 60 80 i00 

n = 0  

g, 3.143 6.6-08 3.7-14 0 0 

9: 3.243 -1,148 1.4-13 0 0 

gr  -1.242 -6.5-06 2 , 9 4 9  1.3-12 1 ,049  
g, -7.6-01 -4.741 -2.7-01 -1.MI -6.8-02 

go 8.3-01 1.6tOO 2.7+00 2.8tOO 3.1tW 
gd 7.444 8.3-06 -1.8-08 -1.8-11 -1.7-11 
g, -1.042 -8.0-06 2.7-09 2.7-12 1.C-08 

n = 2  

g, -1.3-02 2 .746-1 .1 -12  0 0 
g, -3.9-01 -9 .W6 -1.2-12 0 0 

g: -1 ,342 1.446 3.1-12 0 0 
g, -1 . l tm -8.Wl -5.841 -3.7-01 - 2 . W l  

gz 3.341 1.2tOO 2.WO 2.4tOO 2.9tOO 
gd -2.741 -1.7-04 1.5-07 6.6-11 1.C-08 
P. -2.241 -2.544 1.9-07 1.ClO 1.C-08 

Figure 1. The dependence of the relative error E (in 70) of the ground-state energy obtained by 
the algebraic WIM on g and N = 9, 11, 15 for V ( x )  = .@. 

[l] that it is possible to deal with the generalized anharmonic oscillators x2 + IJZMX'~ by 
adopting the values of g, which are deduced for the pure xZM oscillator. We consider this 
statement to be confusing, because the g, approach, perfectly suited for the pure quartic 
oscillator, was found to work much worse when I J ~ M  differs significantly from unity (cf 
tables 1, 2 and 3). For the sake of comparison, the authors of [ 11 proposed us to correct 
their formula, multiplying (20) by ( I J Z M ) " ( ~ + ' ) ,  
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Tables 1 and 3 shows that the new g, provides much better results than (20). It is worthwhile 
noticing also the similarity of this corrected formula to (19). 

As a third numerical example, we consider the quartic doublewell potential given by 
(26) with y = -1. In such 1 case, the accuracy of the HDM appears to be very sensitive 
to the choice of the parameter g, because the higher the potential barrier A V  = u2/(4u4),  
the narrower the range of optimal g’s. It is found, in parficular, that the g, (respectively, 
g.) approach provides g values which are too large (respectively, too small). That is the 
reason why the convergence properties of these approaches deteriorate very rapidly as I J ~  

decreases and, for uq = 0.025 ( A V  = IO), they fail to produce convergent results. The rest 
of the approaches work, more or less, well, however, we again emphasize that the g, and 
gi approaches produce much more rapid convergence than any others. 

The superiority of the present method for the determination of g over the other analytical 
methods, based on equations (13) and (213-(25), is understandable because these are all 
apparently independent of N .  In contrast, criterion (1%) depends on N explicitly, and is 
found to provide us, at each value of N ,  with a value of g which lies just in the middle of 
the optimal range. 

Further calculations were performed to check the utility of the present method, as 
applied to the three-term potentials v2xz+ u4x4 + ugx6. First, the method was applied to the 
special double-well potential -zXz - zX4 + x6, which Chaudhuri 1201 and Killingbeck 
[21] used in their works. We quickly found the two lowest even-parity energies -1  
and 3.629826493984 12. The latter value improves Killingbeck’s value 3.629 8265; 
higher eigenvalues are also easily calculated. Second, we treated the triplewell potential 
loxz - 50x4 + E x 6  which we used in I .  The correct eigenvalues were obtained. 

One can note, in addition, that the present method for the g determination is thought 
to be well suited for potential models that are not parity invariant. That this is the case is 
shown in I in terms of the variational HDM. Now we wish to generalize the equation for g 
to the case of an arbitrary Hamiltonian of the form (lb). To treat this case, it is sufficient 
to replace X k ( 2 . n  + p )  in (I5c) by X,(n) ,  which immediately yields 

and, therefore, 

g, = [ 4 h f y ~ x 2 ~ N ~ - I / ( h f  + l)]”(M+’). (28) 

We note the relative ease with which both (19) and (28) have been obtained. 

S. Conclusion 

In this paper, we have studied the convergence properties of the algebraic HDM with the 
simple convergence factor exp(-gx2/4). It is obvious that, generally, the best choice of g 
is a function of n, N, y, . . . , U Z M .  In most cases, however, the methods currently used for 
the g determination provide us with g independent of N. This is in disagreement with both 
analytical [I, 21 and numerical [5,11] calculations, which show that 86 is very sensitive to 
N and yM, being practically independent of the other parameters. 

On the similarity of (IO) to (14). we have employed a standard variational technique 
and determined N dependence by minimizing the trace of the matrix representation of the 
Hamiltonian for a given N .  The only assumption we have made is that the best choice 
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of g is independent of the method to be used to determine the expansion coefficients Cj. 
Parameter g is thus matched in a very easy way because the necessary calculations are 
extremely simple. It is interesting to note that, within a constant factor, ow result exactly 
coincides with that of Hautot and Magnus (27), obtained in a quite different way. In the 
application to three particular systems, both the approaches gt and g; have produced much 
more rapid convergence of the eigenvalues than the other analytical approaches currently 
used for the g determination. 

In addition, we note that the present material is not exhaustive with respect to 
methodology. Work in applying an analogous approach to determining the parametric 
dependence of the HDM with an arbitrary convergence factor is in progress. 
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